H(t)=-4.9t^2+9000

Simple and best practice solution for H(t)=-4.9t^2+9000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-4.9t^2+9000 equation:



(H)=-4.9H^2+9000
We move all terms to the left:
(H)-(-4.9H^2+9000)=0
We get rid of parentheses
4.9H^2+H-9000=0
a = 4.9; b = 1; c = -9000;
Δ = b2-4ac
Δ = 12-4·4.9·(-9000)
Δ = 176401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{176401}}{2*4.9}=\frac{-1-\sqrt{176401}}{9.8} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{176401}}{2*4.9}=\frac{-1+\sqrt{176401}}{9.8} $

See similar equations:

| H(t)=-4 | | 6n-9-3n=3n-9 | | x-1/3-5=x-5/2 | | F=9/8(n-51) | | x-3-3x=7x+8-8x | | p+(0.05p)=33.60 | | 1/24y^2+1/4y+1/3=0 | | 8(2-(5+2x))-2x=-26+2(1-9x) | | -7+3z=-22 | | 7y+35+y=2y+5 | | 240.00+0.25x=370.00 | | 5+k/2=6 | | (15x-2)(7x+4)=90 | | 11x+9-8x=x-15 | | 870+y=560 | | 4x+2(5x-16)=-116 | | 9x/8-3=24 | | |n|+1=2 | | 18=-3(23-z)+2(z-4) | | -4x+2(3×-3)=5-9x | | 8(k-1)=6(k-6) | | 5y+5+4y=10y | | 36y-12=y-4 | | 90=x+5x+6 | | 2x^2+3x-899=0 | | 12m-8=6m | | 11=b-10 | | 84=x+5x+6 | | -4(5x+4-x-1=-164 | | 6x-(3x+5)=4 | | -2x^2+2x+930=0 | | 7x-5=$x-6 |

Equations solver categories